1. Answers
  2. Dynamic Routing for AI Services with Traefik on Kubernetes

How Do I Implement AI-Based Dynamic Routing With Traefik on Kubernetes?

Introduction

This guide aims to demonstrate how to implement dynamic routing for AI services using Traefik on a Kubernetes cluster. Traefik is a versatile open-source reverse proxy and load balancer that integrates seamlessly with Kubernetes, making it an ideal choice for managing traffic to AI services. By following this guide, you will learn how to deploy a Traefik ingress controller and configure it to route traffic dynamically to various AI services based on URL paths.

Key Points

  • Deploy a Traefik ingress controller on Kubernetes.
  • Configure Traefik to route traffic to different AI services.
  • Use Kubernetes Ingress resources to define routing rules.

Step-by-Step Implementation

  1. Create a Namespace for Traefik: Begin by creating a dedicated namespace for Traefik to keep its resources organized.

  2. Deploy the Traefik Ingress Controller: Use a Helm chart to deploy the Traefik ingress controller. This will manage incoming requests and direct them to the appropriate services.

  3. Create a Namespace for AI Services: Establish a separate namespace for AI services to isolate them from other applications running on the cluster.

  4. Deploy an Example AI Service: Deploy a sample AI service within the AI services namespace. This service will be the target for your dynamic routing configuration.

  5. Configure an Ingress Resource: Define an Ingress resource to instruct Traefik on how to route incoming traffic based on the URL path. This configuration will enable dynamic routing to the AI service.

import * as pulumi from "@pulumi/pulumi";
import * as k8s from "@pulumi/kubernetes";

// Create a namespace for Traefik
const traefikNamespace = new k8s.core.v1.Namespace("traefik-namespace", {
    metadata: {
        name: "traefik",
    },
});

// Deploy the Traefik ingress controller
const traefikHelmChart = new k8s.helm.v3.Chart("traefik", {
    chart: "traefik",
    version: "10.3.4",
    namespace: traefikNamespace.metadata.name,
    fetchOpts: {
        repo: "https://helm.traefik.io/traefik",
    },
    values: {
        service: {
            type: "LoadBalancer",
        },
    },
});

// Create a namespace for AI services
const aiNamespace = new k8s.core.v1.Namespace("ai-namespace", {
    metadata: {
        name: "ai-services",
    },
});

// Deploy an example AI service
const aiServiceDeployment = new k8s.apps.v1.Deployment("ai-service-deployment", {
    metadata: {
        namespace: aiNamespace.metadata.name,
        name: "ai-service",
    },
    spec: {
        replicas: 2,
        selector: {
            matchLabels: {
                app: "ai-service",
            },
        },
        template: {
            metadata: {
                labels: {
                    app: "ai-service",
                },
            },
            spec: {
                containers: [
                    {
                        name: "ai-service",
                        image: "my-ai-service-image:v1",
                        ports: [
                            {
                                containerPort: 80,
                            },
                        ],
                    },
                ],
            },
        },
    },
});

const aiService = new k8s.core.v1.Service("ai-service", {
    metadata: {
        namespace: aiNamespace.metadata.name,
        name: "ai-service",
    },
    spec: {
        type: "ClusterIP",
        selector: {
            app: "ai-service",
        },
        ports: [
            {
                port: 80,
                targetPort: 80,
            },
        ],
    },
});

// Configure an Ingress resource to route traffic to the AI service
const aiIngress = new k8s.networking.v1.Ingress("ai-ingress", {
    metadata: {
        namespace: aiNamespace.metadata.name,
        name: "ai-ingress",
        annotations: {
            "kubernetes.io/ingress.class": "traefik",
        },
    },
    spec: {
        rules: [
            {
                host: "ai.example.com",
                http: {
                    paths: [
                        {
                            path: "/",
                            pathType: "Prefix",
                            backend: {
                                service: {
                                    name: aiService.metadata.name,
                                    port: {
                                        number: 80,
                                    },
                                },
                            },
                        },
                    ],
                },
            },
        ],
    },
});

Summary

In this guide, we successfully set up a Traefik ingress controller on a Kubernetes cluster to manage dynamic routing for AI services. By configuring Kubernetes Ingress resources, we defined routing rules that allow Traefik to direct traffic based on URL paths. This configuration provides a scalable and flexible solution for routing traffic to AI services within a Kubernetes environment.

Deploy this code

Want to deploy this code? Sign up for a free Pulumi account to deploy in a few clicks.

Sign up

New to Pulumi?

Want to deploy this code? Sign up with Pulumi to deploy in a few clicks.

Sign up